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Abstract-In several papers Awojobi has used an approximation technique to solve the problems
of the forced oscillations of a body on an elastic stratum. The present paper compares his
approximate solution for axially symmetric torsion with numerical results derived from an
integral equation developed by Gladwell. The approximate results show acceptable accuracy
for the prediction of resonant frequencies. The prediction of resonant amplitude is limited by the
nature of the approximate method.

I. INTRODUCTION

Although there are presently many papers dealing with the vibrations of a body on an elastic
half-space, there are relatively few which deal with the vibrations of a body on an elastic
stratum. The reason is that the analysis is quite tedious, and the development of numerical
results over a significantly wide frequency range requires a relatively large computing effort.
At present exact solutions are available only for the case of axially symmetric torsion. The
problem was first treated by Collins[l] who considered the forced torsional oscillations of an
elastic half-space and an elastic stratum. He used a method developed previously to establish
an integral equation which could be solved by iteration for low frequencies and relatively
large stratum thicknesses. Williams[2] solved the same problem by using Green's function
technique and also pointed out a minor error in Collins' paper. A simpler analysis was given
by Gladwell[3] who formulated the problem by means of integral transform techniques. He
obtained an integral equation which was solved asymptotically for the cases of low fre
quency and relatively large stratum thickness. Gladwell also considered the case when the
bottom surface of the stratum is stress free.

The forms of solution as given by Collins, Williams and Gladwell provide a good vehicle
for solution on a high speed computer, thereby yielding highly accurate numerical results
over a relatively large frequency range. However, the difficulty of the computing problem is
such that approximate solutions that could reduce the computational task appreciably
would be highly desirable. It is for this purpose that Awojobi, in his papers[4-6], developed
an approximation function to solve the respective dual integral equations. He deduced that
if the problem of a body oscillating on an elastic stratum is formulated by integral transform
techniques, then hyperbolic functions arise naturally in the resulting integral equations.
Awojobi proposed to solve these equations by use of the approximation

tanh(x) == x/(l + X
2

)1 / 2 (1)
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16 Some comments on an approximation by Awojobi

and the results in his papers followed from the substitution given by equation (l). The
remainder of this paper will be concerned with numerical results derived from the solution
of the integral equation in Gladwell's paper. It will be possible to obtain thereby the di
mensionless amplitude at resonance, which can be compared with similar quantities from
Awojobi's results.

2. SOLUTION

The problem of the axially symmetric torsional oscillations of a rigid disk of radius a,
bonded to an elastic layer of thickness h, is considered. Through the use of integral transforms,
Gladwell reduced the problem to a Fredholm integral equation of the second kind given
by

I 1
8(x) + - f M*(x, ()B«() de = 24>x

1r 0
(0 s x s 1), (2)

where 8(x) is an unknown function and the kernel is given as

1

M*(x, () = k f tan(ru)'P(k, j1-- ~i) du
o

1

- k 50 x(k,ji-':'::u2) du

+ k C[tanh(ru) - 1]'P(k, j1+7) du
'0

- 2rri f sin«(nx)sin(enO
d n=l

(3)

Here 4> is the angle of twist at maximum amplitude, d = hla, k = aro(plfl)1/2, r = kd, fl
and p are the shear modulus and density of the stratum and ro is the circular frequency.
The functions X and 'P are defined by

X(k, s) = sin[k Ix (I s] - sin[k(x + ()s],

'P(k, s) = cos[k(x ()s] - cos[k(x + e)s],

and ~n are the roots of the equation

cos[(k2 (/f /2 d] = 0,

or (n are given by

{ [
(2n - 1)1r] 2\1 / 2

(n = k I - 2r. I (n = 1,2, ... , m),

(4)

(5)

(6)

(7)

where m is the greatest integer less than r/n + t.
The computing task involves the computation of O(x) from equation (2). One serious

problem of the calculation is the evaluation of principal value integrals that occur in the
first integral ofequation (3). The number of principal values will depend upon the magnitude
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of the value of T. Once (J(x) is obtained, the physical quantities are readily determined.
Gladwell showed that the torque may be expressed as

1

T=8Jw3 f t(J(t)dt. (8)
o

Unless the value of 't is such that equation (6) has not roots, the torque will generally consist
of a real and imaginary part and may be expressed as

16 16
T/(ap?4» = 3 (1 + p) + 3 q, (9)

where p is the real part that deviates from the static half-space solution and q is the imaginary
part of the torque. In terms of p and q the nondimensional amplitude may be given as

{[
16 ]2 (16 )2}-1/2

A = 3 (1 + p) - Jk2 + 3 q , (10)

where J is the nondimensional polar moment of inertia of the body and is related to the
polar moment of inertia by the relation J = Jplpas.

The amplitudes in equation (10) represent important physical quantities, and for com
parison purposes the peak nondimensional amplitude as a function of d, for various values of
J, would offer a fair test for the approximation scheme in[4].

Some comments should be made concerning the manner in which the integral equation
(2) was solved. The principal value integration was computed by assuming the integrand to be
anti-symmetric about its singular points over a sufficiently small interval. By disregarding
this interval of 0'002, it was found that the integral could be computed to within 0·2 per cent
accuracy.

Having developed a sufficiently accurate scheme for the calculation of the principal value
integrals, integral equation (2) can be computed with relative ease. The integral was replaced
by a finite sum by the use of Simpson's rule, and the integral equation was thereby trans
formed into a matrix equation which could be easily solved. The unknown function was
solved by using eleven points each for its real and imaginary part. When 21 increments each
were used the results were within 0·2 per cent of the previous case.

3. NUMERICAL RES U L TS AND CONCLUSIONS

The complex stiffnesses were calculated for several values of d and a range of k from 0·8
to 1·5. The frequency, k, could be assigned higher values than the range given, but for the
purposes of this paper a maximum value of 1·5 is sufficient. One interesting feature of the
curves is that the real part changes its curvature when the frequency is sufficiently high as
to cause participation of an additional root in equation (3). The imaginary part of the
solution intersects the abscissa which further confirms the numerical procedures.

With the curves of complex stiffnesses obtained over a suitable frequency range it is possible
to calculate the maximum amplitude for a given J and the frequency at which this amplitude
occurs. The calculation is summarized by Table I. The resonant frequencies calculated by
the approximate method are in acceptable agreement with those of Table 1.

Figure 1 shows the curves drawn from Table 1 and points taken from equivalent curves
in[4] and [5]. One should not expect qualitative agreement for large values of J and small
values of d since the approximate technique predicts damping for all frequencies considered
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18 Some comments on an approximation by Awojobi

Table I. Resonance frequencies k, and nondimensional amplitudes at
resonance A,

J=5 J = 3-49 J=2
d

k, A, k, A, k, A,

I 1·011 w 1'181 w 1·459 00

1·25 0·988 w 1·145 w 1·350 2'760
1·5 0·971 w 1·098 6·031 1'341 1'185
1·75 0·944 8·499 1·088 2·121 1·355 0·924
2 0·939 3'114 1·095 1'592 1-379 0·843
2'5 0·948 2·069 1·113 1·363 1·426 0·847
3 0·957 1·946 1·127 1·392 1'454 0·966
3'5 0·963 2·008 1·135 1'510 1·405 1·058
4 0·959 2-366 1·134 1·726 1·400 0·951
4'5 0·967 2·363 1·118 1·680 1.404 0·913
5 0·959 2·462 1·118 1'549 1-429 0·931

10 0·961 2-178 1'124 1·596 1·417 0·958
w 0·961 2·245 1·124 1'564 1·404 0·925

here. Equation (3) will have no complex part for the frequency range below a critical fre
quency which corresponds to the fundamental frequency of torsional vibration of a rod
of the material of the stratum, of length h, free at one end and fixed at the other. There
fore below this frequency there will be no damping. The approximate method is seen to be
reasonably effective for d> 3(J = 2), d> 4 (J = 3'49), and d> 4'5 (J = 5).

One can use the approximate method to predict resonant frequencies with reasonable
accuracy. However, one must use caution in assigning damping with the approximate
technique, since for certain ranges of parameter there will be qualitative differences between
it and exact theory.
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Fig. 1. Nondimensional amplitude at resonance as a function of d for J = 2'0, 3·49 and 5·0.
Circles show points taken from Figs. in [4] and [5]. Solid curves are from present analysis.
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A6cTpaKT - B HeCKOJIbKO pa60Tax AYO,LllK06H npHMeHJlJI npH6JIHlKeHHbIH MeTO,Ll AlIJi paC'feTa
3aAa'f BbIMYlK,LleHHbIX KOJIe6aHHH TeJIa Ha ynpyroM CJIoe. HaCTOJlIl(a» pa60Ta cpaBHHBaeT ero
npH6JIHlKeHHOe pellIeHRe, ,LlJIJI oce-cHMMeTpH'feCKorO Kpy'feHHJI, c lfHCJIeHHbIMH pe3yJIbTaTaMH,
nOJIyqeHHbIMH H3 HHTerpaJIbHOrO ypaBHeHHJI, npe,LlJIOlKeHHOro rJIa,LlyeJIJIeM. IlpH6JIHlKeHHble
pe3YJIbTaTbI YKa3bIBaIOT lKeJIaHHyIO TO'fHOCTb ,LlJIJI npe,LlCKa3aHHJI pe30HaHcHblx 'faCTOT.
Ilpe,LlcKa3aHHe pe30HaHcHoH aMllJIIITY,LlbI orpaHR'feHO npHpo,!J,oH npH6JIHlKeHHOrO MeTO,!J,a.


